

TP09-Découverte

Techno Indus

Aspirateur Robot

DT

1° Mise en situation.

L'ensemble de l'étude sera à réaliser sur l'aspirateur Robot disponible dans la salle.

Pour réaliser ce travail utilisez le système mis à disposition ainsi que du dossier technique de l'aspirateur disponible à l'adresse suivante:

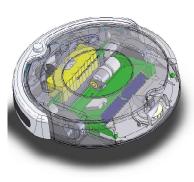
http://meca3.free.fr/DossierTechnique/ AspirateurRobot/index.htm#

A fin de bien s'approprier le système Aspirateur Robot, et vous permettre d'en trouver toutes les réponses et argumentation possible pour une négociation.

2° LECTURE DE PLAN

2.1. Recherchez sur les documents graphiques du dossier technique et du système réel, les éléments suivants:

- La batterie
- Le moteur brosse latérale
- -Latransmission
- Les capteurs de chutes
- Les brosses
- Les capteurs de choc



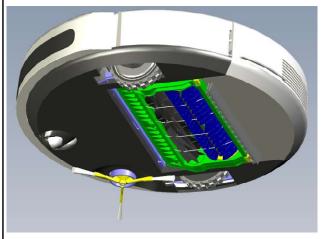
Pour répondre vous allez réaliser un **tableau Excel** avec le nom de l'élément, sa photo, le nom du ou des document(s) où vous avez trouvé la réponse.

2.2. Cherchez pour les mêmes éléments les caractéristiques.

Pour cela rajoutez une colonne à votre précédant tableau.

3° ANALYSE FONCTIONNELLE.

- 3.1. Réalisez une étude du besoin, en réalisant une bête à corne.
- 3.2. Recherchez les fonctions que doit assurer cet aspirateur robot et réalisez un diagramme des inter-actions.
- 3.3. Réalisez un actigramme de niveau A-0.
- 3.4. A l'aide du FAST fourni, rajoutez à celui-ci une image de chaque solution technique.


TP09-Découverte

Techno Indus

Aspirateur Robot

DT

4° CINÉMATIQUE

- 4.1. Recherchez les différentes Classes d'équivalence.
- 4.1.1. En coloriant sur un dessin l'ensemble des pièces immobiles sur cet aspirateur Robot.
- 4.1.2. En coloriant sur une autre image l'ensemble des pièces assurant le déplacement de l'aspirateur robot.
- 4.1.3. En coloriant sur une autre image l'ensemble des pièces assurant la détection des obstacles sur l'aspirateur robot.

5° SIMULATION

- 5.1. Mesurez la tension d'entrée lors de la recharge de l'aspirateur robot.
- 5.2. Calculez sa vitesse d'avance en ligne droite.

- 5.2.1. Réalisez 3 mesures et reportez vos résultats dans un tableau Excel en y notant la distance parcourue (e) et le temps mis (t).
- 5.2.2. En utilisant la formule de cinématique:
- <u>e=v.t</u>, complétez votre tableau avec une 3ème colonne donnant la vitesse linéaire de votre robot aspirateur.
- 5.2.3. En supposant que la vitesse reste constante et qu'il n'y ai aucun obstacle dans la salle de classe, calculez le temps que prendra le nettoyage de cette salle par l'aspirateur robot.