

Dans ce TP, il vous est demandé de concevoir une partie d'un vérin électrique.(Zone encerclée cidessus)

Le concept du **TP**, est de concevoir un nouveau produit à partir d'éléments déjà existants de la **bibliothèque du modeleur 3D** et des pièces déjà réalisées.

L'objectif principal est de modifier le moins de pièces possibles. Le bâti exterieur, l'arbre et le système roue et vis sans fin.

Remarque: Une version papier à l'échelle 1 :1 est disponible sur demande.

2° TRAVAIL À RÉALISER.

2.1. Récupérer les pièces et le dessin d'ensemble <u>SERecepteurfixe.</u>

2.2. Recherche des cotes permettant de placer les roulements, les clavettes, l'ecrou frein et sa rondelle..

a) Réalisez un dessin en 2D de cet ensemble.

b) Cotez toutes les surfaces reliées à un élément mobile de l'ensemble moteur. (exemple: diamètres et portées des roulements, longueur, largeur et implantation des clavettes...)

c) Sauvegardez sous **SE-REDUCTEUR****.idw**.

d) Réalisez le dessin 2D de l'arbre <u>29</u>.

e) Cotez toutes les surfaces reliées à un élément du sous-ensemble SE-Reducteurrfixe, comme précédemment..

f) Sauvegardez sous 29-ArbreRecepteur****.idw

egardez sous 29-ArbreRecepte

CONCEPTION

TP03- SEMoteur

NOM: Prénom: Classe: Date: Groupe de TP:

2.3. Réalisation du Sous-Ensemble Mobile du Reducteur.

- a) Créez un nouveau assemblage 3D.
- b) Insérez l'arbre 29.
- d) Sauvegardez sous **SE-RecepteurMob****.iam**

2.3.1. Recherche des roulements

a) En fonction des cotes trouvées dans les vues en **plan 2D**, recherchez dans la bibliothèque du **modeleur 3D** les roulements à billes correspondant.

b) Si vous ne trouvez pas de roulement à billes avec les bons diamètres intérieur et extérieur, modifiez, la ou les pièces avec une modification minimum. Appliquez le même raisonnement pour les longueurs de portées des roulements.

2.3.2. Modification des pièces.

a) Ouvrez la pièce à modifier.

b)Recherchez la fonction ou l'esquisse à modifier.

c) Modifiez les cotes.

Remarque : Indiquez clairement dans votre compte rendu les modifications réalisées.

d) Sauvegardez votre pièce.

2.3.3. Assemblage.

a) Revenez dans le modèle 3D de l'ensemble et vérifiez que la modification est bien réalisée.

b) Placez les roulements en les immobilisant sur l'arbre.

2.3.4. Recherche des clavettes.

Même principe à appliquer pour la mise en place des clavettes. Utilisez votre livre ou un recueille de norme pour rechercher dans la bibliothèque les bons modèles de clavettes.

2.3.5. Placez les clavettes dans l'assemblage modifié.

a) Réalisez une liaison complète entre l'arbre et les clavettes.

b) Sauvegardez l'assemblage.

	/
1	NOM:
	Prénom:
	Classe:
	Date:
	Groupe de TP:

TP03- SEMoteur

2.3.6. Recherchez l'écrou à encoche et sa rondelle frein.

a) Dans la bibliothèque recherchez un **écrou SKF**, si vous ne trouvez pas le modèle, il est possible de le trouver sur le site du constructeur ou sur le site « **Tracepart**».

b) Modifiez si nécessaire l'arbre 29.

c) Sauvegardez sous SE-Recepteur Mob****.iam

2.3.7. Roue vis sans fin.

a) Ouvrez l'ensemble RoueVis

b) Réalisez le perçage et la rainure de clavette dans la roue avec les mêmes valeurs que sur l'arbre <u>29</u>.

c) Sauvegardez votre ensemble sous RoueVis****.iam

2.3.8. Assemblage de SE-RecepteurMob****.iam

a) Insérez le sous ensemble **RoueVis****** dans l'assemblage.

b) Placez les contraintes pour contraindre totalement le sous-ensemble **RoueVis** dans l'assemblage.

c) Insérez dans votre assemblage l'écrou frein et sa rondelle.

d) Sauvegardez sous SE-RecepteurMob****.iam

2.3.9. Assemblage total.

a) Creez un nouvel assemblage Se-Reducteur****.iam

b) Inserez le **SE-RecepteurMob****.iam** et le **SERecepteurfixe.iam**.

c) Placez des contraintes pour gardez une rotation entre les deux sous ensembles.

d) Sauvegardez sous **Se-Reducteur****.iam.**

CONCEPTION

TP03- SEMoteur

/		
1	NOM:	
	Prénom:	
	Classe:	
	Date:	
	Groupe de TP:	

3° PROJECTION ORTHOGONALE.

a) Réalisez un dessin de projection orthogonale sur un format A3, deSe-Reducteur****.iam.

b) Choisissez les vues, les coupes et l'échelle de votre projection orthogonale.

c) Placez les traits d'axes.

d) Placez le repérage et la nomenclature.

e) Sauvegardez sous Se-Reducteur****.idw

3° COMPTE RENDU

Renvoyez par mail l'ensemble des pièces, assemblages et projection orthogonale avec votre compte rendu, le tout sous format zippé.

(Exemple TP3-NomPrénomGR1.zip)